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Unsteady viscous flow over irregular boundaries 
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Unsteady viscous flow over irregular and fractal walls is discussed, and the flow 
generated by the longitudinal and transverse vibrations of an infinite periodic two- 
dimensional wall with cylindrical grooves is considered in detail. The behaviour of the 
Stokes layer and the functional dependence between the drag force and the frequency 
are illustrated in a broad band of frequencies for walls with sinusoidal corrugations 
and a family of walls with triangular asperities leading to fractal shapes. It is shown 
that, in the case of longitudinal oscillations, the drag force on a fractal wall with self- 
similar structure exhibits a power-law dependence on the frequency with an exponent 
that is related to the fractal dimension of the microstructure expressing the gain in 
surface area with increasing spatial resolution. Numerical evidence suggests that, in the 
case of transverse oscillations, the dissipative component of the drag force may show 
a power-law dependence on the frequency, but the exponent is not directly related to 
the geometry of the microstructure. The significance of these results on the behaviour 
of the drag force on walls with three-dimensional irregufarities is discussed. 

1. Introduction 
Consider a low-amplitude oscillatory viscous flow within a channel with highly 

irregular walls. At sufficiently high frequencies, the flow is composed of an outer 
irrotational core and an inner Stokes layer that wraps around the walls. As the 
frequency is increased, the thickness of the Stokes layer decreases and the interface 
between the Stokes layer and the potential core penetrates into the finer corrugations. 
Since the Stokes layer feels an increasingly larger effective boundary surface area, one 
may argue that the drag force on the wall and rate of viscous dissipation in the fluid 
tend to obtain increasingly larger values. Furthermore, one may conjecture that if the 
wall has a self-similar microstructure with an infinite surface area, the drag force and 
rate of dissipation will tend to diverge at an algebraic rate, but the exponent will not 
necessarily be related to the fractal dimension of the wall expressing the gain in wall 
surface area with increasing resolution (Johnson, Koplik & Dashen 1987). 

To assess whether the rate of dissipation within channels with self-similar 
indentations does indeed diverge, Koch (1987) carried out an asymptotic analysis of 
oscillatory flow within a two-dimensional channel with self-similar rectangular 
crevices. Assuming that the lengthscales of the crevices are widely separated and then 
solving for the outer potential flow, he found that the rate of dissipation diverges for 
a restricted class of geometries, including shapes with finite surface area. Furthermore, 
assuming that the rate of dissipation is proportional to the effective surface area seen 
by the Stokes layer, as measured by a yardstick whose lengthscale is equal to the 
nominal thickness of the Stokes layer, Koch concluded that even when the rate of 
dissipation diverges, it does not do so in a manner that is related directly to the 
geometrical features of the wall microstructure. 
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FIGURE 1. Schematic illustration of an irregular wall with cylindrical periodic grooves. The wall 
executes longitudinal oscillations along the z-axis or transverse oscillations along the x-axis 
generating a Stokes boundary layer. 

To provide further evidence on the behaviour of viscous oscillatory flow over rough 
surfaces, in this paper we present a numerical investigation of viscous oscillatory flow 
over uneven and irregular walls. The main goal is to illustrate the functional 
dependence between the drag force and the frequency, thereby assessing whether the 
presence of an infinite cascade of self-similar irregularities alters the usual scaling laws 
observed for walls with finite surface area. Another objective is to examine the accuracy 
of scaling arguments based on the concept of the effective wall surface area seen by the 
Stokes layer. 

We consider a model configuration that is composed of a two-dimensional periodic 
wall with cylindrical grooves vibrating along or across the generators, as illustrated in 
figure 1. In the absence of hydrodynamic instabilities, longitudinal oscillations along 
the z-axis produce unidirectional flow along the generators, whereas transverse 
oscillations along the x-axis produce a two-dimensional flow in the (x, y)-plane. At low 
frequencies, the nominal Stokes-layer thickness 6 = (w/v) i  is considerably larger than 
the scale of the irregularities, and far from the wall the flow resembles that due to the 
oscillations of a flat plate ; here w is the frequency of oscillations and v is the kinematic 
viscosity of the fluid. At large frequencies, 6 is comparable to the characteristic size of 
the irregularities, and the Stokes layer penetrates into the corrugations with a local 
intensity that depends upon both the direction of motion and the geometry of the 
microstructure. 

To simplify the analysis and computations, we shall assume that, in the case of 
transverse oscillations, the amplitude of the motion is sufficiently small compared to 
the size of the grooves that nonlinear convective forces are small compared to viscous 
and acceleration forces and the flow is governed by the linear equations of unsteady 
Stokes flow. This assumption allows us to use efficient numerical methods based on 
boundary integral formulations and conformal mapping. The significance of 
linearization for highly irregular and fractal walls and the effects of inertia will be 
addressed in 533 and 4. 

In 92 we consider the flow generated by the longitudinal oscillations of smooth and 
fractal walls, discuss the asymptotic behaviour at high frequencies, and present 
numerical results for sinusoidal walls and a family of walls with triangular asperities 
leading to fractal shapes. The computations will demonstrate explicitly that the 
presence of an infinite cascade of self-similar boundary irregularities alters the usual 
functional relationship between the drag force and the frequency at sufficiently small 
Stokes-layer thicknesses. We shall show that the usual scaling law must be replaced by 
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an alternative law that involves the fractal dimension of the microstructure expressing 
the gain in wall length with increasing spatial resolution. In view of the strong 
restriction on the direction of motion, however, these results will not be claimed to 
have a general applicability. 

In 6 3 we consider the corresponding problem for transverse oscillations. Several 
previous authors have considered unsteady flow over corrugated walls with emphasis 
on describing the onset of steady streaming motion due to inertial effects, and assessing 
the significance of boundary corrugations on fluid advection and mixing (Lyne 1971 ; 
Kaneko & Honji 1979; Sobey 1980; Ralph 1986). We shall consider sinusoidal walls 
with large-amplitude corrugations and walls with self-similar microstructure. We shall 
demonstrate that the leading-order contributions to the drag force is due to the added 
mass of the grooves, which is finite even when the wall has an infinite length, whereas 
the leading-order dissipative contribution to the drag force is proportional to a drag 
coefficient, whose value is likely to diverge as the geometry of the wall becomes more 
refined. This behaviour allows for an algebraic dependence of the drag force on the 
frequency, but the numerical results suggest that this functional form does not involve 
the fractal dimension of the wall in a direct manner. 

We conclude in 34 by discussing the behaviour of walls with three-dimensional 
irregularities and commenting on the significance of these results within the general 
context of transport processes across irregular and fractal boundaries. 

2. Longitudinal oscillations 
We consider the flow generated by an infinite wall with cylindrical grooves 

oscillating along the z-axis with velocity w = Vexp (iwt), as illustrated in figure 1. The 
Stokes solution for the flow generated by the vibration of a flat plate will serve as a 
point of reference for assessing the effect of the corrugations (Landau & Lifshitz 1987, 
p. 83). This solution shows that the magnitude of the drag force per unit area on the 
plane wall is proportional to wa or 1/6 where 6 = (v/w)a is the nominal Stokes-layer 
thickness. The phase shift between the drag force and the wall velocity is a constant 
independent of w ,  equal to -in. 

At high frequencies, the Stokes boundary layer wraps around the corrugations with 
undiminished intensity; locally, the flow resembles that due to the oscillations of a flat 
plate. Using the Stokes solution we find that as frequency is increased, the drag force 
per unit width over one period L tends to the finite asymptotic value 

D = @V/S)  9e-b i ,  (2.1) 
where 2’ is the wall length defined as the arc length of the trace of the wall over one 
period in the (x, y)-plane. Equation (2.1) may be regarded as a scaling law between D 
and 6, stating that at high frequencies, the magnitude of D is proportional to 1/6 or wi, 
but the phase shift is constant, equal to -::, independent of 6 or w. 

We consider next a wall that contains an infinite sequence of self-similar asperities 
over each period, so that its trace in the (x,y)-plane is a fractal line and 2’ is infinite. 
Clearly, (2.1) breaks down, implying that the magnitude of D may not be proportional 
to 1/6. An alternative scaling law may be derived by arguing that, as the frequency is 
increased, progressively finer wall structures are felt by the Stokes layer and thus the 
magnitude of the drag force is proportional to an effective wall length gff that is a 
function of 6, so that ID1 = p V g f f / 6  (Johnson et al. 1987; Koch 1987). 

One plausible choice for qff is the length of the wall as measured by a yardstick 
whose unit length is equal to 6. This suggests a relation of the form ID( = pVvf(L/S), 
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FIGURE 2.  For caption see facing page. 
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FIGURE 2. The distribution of the reduced magnitude and phase shift of the shear stress q on a 
sinusoidal wall executing longitudinal oscillations, for several frequencies 52. Distributions of (a) 
reduced magnitude and (b)  reduced argument for wall amplitude a / L  = 0.10; the dashed lines 
represent predictions of an asymptotic theory for small wall amplitudes. Distributions of (c) reduced 
shear stress magnitude and (d )  reduced argument for a / L  = 0.50. 

where the functionf(L/6) depends on the geometry of the wall microstructure. For a 
wall with an infinite sequence of self-similar irregularities one might expect a power- 
low relationship of the typef(l/6) = /3(L/~?)l+~, where /3 is a constant and the exponent 
d expresses the gain in wall length with increasing refinement, yielding 

(DI % pV/3(L/6)1+d. (2.2) 
Note that for a wall with finite length ,8 = 2 / L  is a geometric constant and d = 0, so 
that (2.2) reduces to (2.1). It must be emphasized at this point that the derivation of 
(2.2) is based upon the premise of effective surface area whose accuracy requires further 
investigation. Some corroborating evidence will be provided by the results of numerical 
computations presented in 92.1. 

To derive a scaling law for the phase shift of D, we replace the fractal wall by a 
smooth wall whose geometry conforms with the gross shape of the fractal wall as seen 
by an observer with spatial discrimination of order 6. Further theoretical development, 
however, necessitates detailed computations and discourages analytical treatment. 

To illustrate the practical significance of the modified scaling law (2.2), let us assume 
that the boundary depicted in figure 1 is set into motion impulsively in the direction of 
the generators at a constant speed. Taking the Fourier transforms of all flow variables 
and using the scalings (2.1) or (2.2) we find that the force necessary to move the 
boundary scales with t-f or &-l), respectively. Inverting this relation, we find that the 
velocity during the initial acceleration period of a wall that is set in motion parallel to 
its generators under the action of an applied constant force increases as t 2  or 
respectively. These differences suggest that the fractal nature of a wall may be assessed 
by studying the short-time behaviour during an impulsively started motion. 

2.1. Numerical results 
We proceed to illustrate the structure of the Stokes layer and behaviour of the drag 
force by presenting results of numerical computations for walls with sinusoidal 
corrugations and families of walls with triangular asperities leading to fractal shapes. 
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The numerical method is based on a boundary integral formulation outlined in 
Appendix A. Given the wall geometry, the structure of the flow is considered a function 
of either the dimensional frequency D = w L 2 / v  or the reduced Stokes layer thickness 
S/L = D-:. 

2.1.1. Sinusoidal corrugations 
First, we consider walls with sinusoidal corrugations whose trace in the (x, y)-plane 

is described by the equation y = -acos(27cx/L). In figure 2(a, b) we plot the 
magnitude of the shear stress distribution q = pK7w.n reduced with respect to the 
inverse Stokes layer thickness 1/S, and the phase shift arg(q) reduced by K ,  for wall 
amplitude a / L  = 0.10. We observe that the distributions of both SlqI/(pV) and arg(q) 
are nearly sinusoidal at all but the highest frequency. Figure 2(a) illustrates clearly that 
the shear stress scales with pV/S  as required by the Stokes flat-plate solution. At 
large frequencies, the curvature of the wall plays a minor role in determining the 
local structure of the Stokes layer, and both &l/(pV) and arg(q)/n tend to 
constant values, equal to 1 and -: respectively. 

A straightforward asymptotic analysis valid for small values of both a / L  and a/S 
shows that to second order in a/S, the dimensionless wall shear stress distribution is 
given by 
Sq/p v = ef"' + ~ / s ( K  eCi - i) cos (27cx/~) 

+ ( u / s ) ~  {G e+ +$(4n2i- K )  e3i - apl cos (47cx/~) + e-3' -;(2a + m +  47~28-2) e+'}, 
(2.3) 

where K2 = (2mf)2+i, p2 = (4n@+i, a = i(2Ke3i-i), s  ̂= S / L ;  (2.4) 
K and p are the square roots of and p2 with positive real parts. The first-order 
predictions of (2.3), represented by the dashed lines in figure 2(a, b), are in good 
agreement with the numerical results at all frequencies. 

In figure 2(c, d )  we present the shear stress distribution for a / L  = 0.50 and note 
some novel features. At low frequencies, the distribution of G/ql/(pV) has a smooth 
shape that is characterized by flat minima at the troughs and sharp peaks at the crests, 
but at higher frequencies, it exhibits noticeable fluctuations. Correspondingly, the 
distribution of arg(q)/7c has a smooth shape at low frequencies and shows local 
extrema at higher frequencies. These features testify to the complex structure of the 
Stokes layer. Adopting the deviation of arg(q)/n from the reference value -: as a 
measure of deviation from the local flat-plate solution, we find that, as the frequency 
is increased, the domain of validity of the flat-plate solution spreads out from the crest 
to the trough in a progressive fashion. 

We turn next to examine the behaviour of the drag force D over one period of the 
wall illustrated in figure 3 (a ,  b). We find that at large values of S/L, the detailed shape 
of the wall becomes irrelevant and the reduced magnitude of the drag force GIDI/(,uVL) 
tends to the asymptotic value of unity, whereas the corresponding phase shift tends to 
-:K. Equation (2.1) states that as S/L decreases, GD/@VL) must tend to the 
asymptotic limit ( 9 / L )  exp (-;ni) ; the numerical results shown in figure 3 (a, b) are in 
agreement with this prediction. It is interesting to note, in particular, that SlDl/(pVL) 
passes through a mild maximum before settling to the asymptotic value 2 / L .  The 
phase shift arg (D) reaches a maximum at an intermediate value S,,,/L that increases 
almost linearly with the wall amplitude. This behaviour suggests that S,,,/L scales 
with the dominant lengthscale of boundary corrugations. 
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FIGURE 3. (a) Reduced magnitude and (b) phase shift of the drag force exerted on sinusoidal 
walls with amplitudes a / L  = 0.10,0.25,0.50, executing longitudinal oscillations. 

FIGURE 4. Schematic illustration of the trace of a periodic wall with triangular asperities defined 
by the aspect ratio a ;  a = 0.50 yields the von Koch line. 

2.1.2. Self-similar asperities and fractal walls 
We proceed next to consider families of walls with self-similar asperities leading to 

fractal shapes. The geometry of the walls is defined by specifying (a) the value of a 
parameter a that expresses the aspect ratio of the asperities and (b) the integer m that 
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FIGURE 5. The distribution of shear stress over one period on a family of walls with triangular 
asperities executing longitudinal oscillations for a = 0.50 and (a) m = 1 ,  (b) m = 2, (c) m = 3; s is the 
normalized arclength with s = -0.50 corresponding to the leftmost point of the contour shown in the 
insets. (a) The magnitude and (e)  phase shift of the drag force over one period. The straight line 
represents the predictions of an effective surface theory expressed by (2.2). 

indicates the generation of the wall, as illustrated in figure 4 and in the insets of figures 
5(a-c), 6 and 9(a,  b). For m = 1 the trace of the wall is a straight line with an infinite 
sequence of triangular asperities, and each time m is increased by one unit, an asperity 
is added in the middle of each segment. When a = + and m = 1 the trace of the wall 
collapses to the x-axis, whereas when a = 1.0 the asperities become flat plates with 
infinitesimal thickness. For a = 0.50 we obtain the standard von Koch family of self- 
similar shapes (Feder 1988). The length of the side of the asperities is given by s1 = aL, 
s, = f(l+2a)sm_, for m > 1 ; the length of the wall over a period is given by 
9 = 3La[E(l +2a)lm-l. Since each time a refinement is effected the length of the wall 
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increases by a factor that is greater than one, as m tends to infinity the length of the 
wall diverges and the trace of the wall becomes a fractal line. 

In figure 5 (a-c) we illustrate the distribution of the reduced magnitude of the shear 
stress for the first three members of the von Koch family corresponding to a = 0.50. 
A local analysis near the corners indicates that the shear stress behaves as s ( ~ - ~ ) ' @ ,  where 
0 is the internal angle of a corner and s is the arclength measured from the vertex; this 
singularity is accurately manifested in the numerical solution (see Appendix A). At 
large frequencies, the distribution of Slql(pV) tends to the value of unity everywhere 
except at the corners where it is either infinite or zero. Cursory inspection of figure 5(b, 
c) shows that the distribution of the shear stress over the individual boundary segments 
is nearly independent of the location of the segments and is determined primarily by 
the turning angles at the vertices. This suggests that the local structure of the flow is 
insensitive to the global geometry of the wall. 

In figure 5 ( d )  we plot the reduced magnitude of the drag force over one period of 
the wall as a function of S/L, on a log-log scale. We observe that as S/L tends to zero, 
log [SlDl/(pVL)] tends to the asymptotic value log (5!/L), in agreement with the 
asymptotic predictions discussed in 92. More importantly, we note that the central 
portions of the curves for m = 2,3 are nearly straight lines with well-defined, nearly 
identical slopes. To interpret this behaviour in the context of the scaling law (2.2), we 
consider the von Koch fractal corresponding to m = 00. We then assume that at a 
particular value of S/L, the magnitude of the reduced drag force S(D( / (pVL)  is 
proportional to an effective wall length g f f / L ,  and identify qff with the length of the 
mth-order von Koch line which is equal to $L(:)m-l. The order m is found by setting 
the length of one segment of the von Koch line equal to S, i.e. 6 = $5($)m-1. Solving for 
m and combining with the previous expression we find that, for sufficiently small layer 
thicknesses, log [SlDl/(,uV'L)] x - d o g  (S/L),  where the constant 

d = -lOg(:)/lOg(i) = 0.262 

is equal to the gain in the length of the von Koch fractal with increasing spatial 
resolution. The predictions of this scaling law, represented by the straight line in figure 
5 (d ) ,  are in excellent agreement with the numerical results, thus corroborating the 
accuracy of the heuristic arguments underlying (2.2). 

In figure 5 (e) we plot the reduced phase shift of the drag force arg (D)/n,  and confirm 
that it tends to the asymptotic value -I both at low and high values of S/L. Maximum 
phase shift is attained at a particular value S,,,/L that increases by a nearly constant 
factor as the wall is refined to the next level. This behaviour suggests that, as in the case 
of sinusoidal walls, Sm,,/L scales with the dominant size of boundary irregularities. 

To demonstrate that (2.2) has a more general applicability, in figure 6 we plot the 
reduced magnitude of the drag force over one period of the wall for asperities with a 
higher aspect ratio a = 0.90 for three generations in = 1,2,3. The shape for m = 3 is 
illustrated in the inset. Following the above arguments we derive the scaling law log 
[SlDl/(pVL)] = -dlog(SL) which is represented by the straight line in figure 6; the 
constant d = -log(5.6/3)/log(1.4/3) = 0.819 is equal to the gain in the wall length 
with increasing spatial resolution. The good agreement between the numerical results 
and the theoretical predictions provides further evidence for the validity of (2.2) within 
the class of fractal shapes with triangular asperities considered in this study. In terms 
of the aspect ratio a, the exponent d is given by d = -log[$(1+2a)]/log [+(1+2a)]. 
Note that when a = 1, in which case the triangular asperities become flat plates of 
infinitesimal thickness, d = 1. 
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FIGURE 6. The magnitude of the drag force on walls with triangular asperities with CL = 0.90. The 
straight line represents the predictions of the effective surface theory expressed by (2.2).  

3. Transverse oscillations 
We proceed to consider the flow generated by transverse oscillations along the x-axis 

with wall velocity u = Vexp(iot). Assuming that the amplitude of the oscillations is 
small compared to the lengthscale of the corrugations, we find that the flow is governed 
by the linearized equation of motion or unsteady Stokes equation (Batchelor 1967, p. 
355; Pozrikidis 1992, Chap. 1). 

In the case of a wall with self-similar microstructure involving an infinite cascade of 
lengthscales, linearization will cease to be accurate when the nominal Stokes-layer 
thickness 6 becomes smaller than a threshold value that is proportional to the 
amplitude of the wall displacement. At smaller layer thicknesses nonlinear forces will 
become important and flow instabilities are likely to develop, rendering the motion 
difficult to analyse and hard to predict. Thus, in this case linearization will be valid only 
when the limit of large frequencies is taken simultaneously with the limit of 
correspondingly small amplitudes of oscillation. 

At high frequencies, the flow is composed of an outer irrotational regime and the 
inner Stokes layer. The outer flow exerts on the wall an inertial force due to the virtual 
mass of the corrugations, whereas the Stokes layer is responsible for a dissipative drag 
force that is composed of a skin friction and a form drag. Summing these contributions 
we obtain the asymptotic expansion 

(3.1) 
where WZ is a dimensionless virtual mass coefficient corresponding to transverse 
acceleration, and d is a dimensionless drag coefficient associated with the Stokes layer. 
Both [m and d may be computed from knowledge of the boundary distribution of the 
velocity potential 4 and tangential velocity of the irrotational flow v that is established 
when the wall is held stationary in an inviscid streaming flow with velocity V parallel 
to the x-axis. We find 

D = ~.[[m( ~ / 6 ) ~ e - C ~ + d ( L / ~ ) e - f " ' +  ...I, 

(3.2) 
1 

[m=- 
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FIGURE 7. The distribution of (a) reduced magnitude and (b)  phase shift of the shear stress on a 
sinusoidal wall with amplitude a / L  = 0.10 executing transverse oscillations at several frequencies. 
The dashed lines represents the asymptotic limit at large frequencies obtained from the potential flow 
solution. (c)  The reduced real and imaginary parts of the drag force for several wall amplitudes; the 
dashed lines are predictions of the asymptotic expansion (3.4). ( d )  Graphs of the virtual mass m and 
drag coefficient d as functions of wall amplitude a/L .  

where n is the unit normal vector pointing into the fluid (Batchelor 1967, pp. 357,407; 
Landau & Lifshitz 1987, p. 87). 

Considering a rough wall with sharp corners, we examine whether m and d remain 
finite and the scaling law (3.1) remains effective in view of the increased energy 
dissipation at the tips. Inspecting the singularity of the potential flow u in the vicinity 
of a sharp corner, we find that m is finite suggesting that the leading order scaling in 
(3.1) is valid. To assess the corresponding behaviour of the drag coefficient d we 
consider the boundary integral of Iu12 in the vicinity of a corner and find that it will have 
a finite value, unless at least one irregularity takes the shape of a thin flat plate of 
infinitesimal thickness. In that case, the second-order scaling in (3.1) will not be 
effective and ought to be replaced by an alternative scaling that reflects the divergence 
of d. In practice, however, the Stokes-layer approximation will cease to be valid at the 
tip, and the local energy dissipation will have a large but finite value suggesting that 
(3.1) will be observed. 

Let us consider now walls with self-similar irregularities, and examine the behaviour 
of m and d with increasing refinement of the microstructures leading to fractal shapes. 
Energy considerations suggest that should be insensitive to the microstructure of the 
wall, and thus to the total surface area of the wall, and must be finite even though the 
wall length might be infinite. The behaviour of the drag coefficient d is not as clear. 
The asymptotic analysis of Koch (1987) suggests that the value of d tends to diverge 
as the geometry of a particular class of walls with self-similar rectangular crevices is 
refined. This includes shapes whose limiting value of the wall length is finite. Further 
evidence for the divergence of d will be presented in $3.1.2. 

It is useful to decompose d into two contributions that include the skin friction due 
to the local structure of the Stokes layer and the form drag due to the global structure 
of the Stokes layer. The skin friction is proportional to the boundary integral of the 
tangential component of the irrotational flow u discussed above, but this is equal to VL 
independently of the wall microstructure. Thus, when d diverges, the form drag will 
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FIGURE 8. The distribution of shear stress on the two von Koch walls illustrated in figure 5(a, b), for 
transverse oscillations: (a) rn = 1, (b) rn = 2. The dashed line represents the asymptotic limit at large 
frequencies. s is the normalized arclength with s = -0.50 corresponding to the leftmost point on the 
contours shown in the insets of figure 5(a, b). (c) The magnitude and ( d )  argument of the dissipative 
part of the drag force. 

make an infinite contribution ; the boundary shape will be such that the boundary 
integral of the tangential component of v is finite but the boundary integral of IvI2 
assumes an infinite value. 

When it is true that the value of d diverges for a particular fractal shape, the second- 
order scaling in (3.1) will not be valid and ought to be replaced by an alternative form 
that might show an algebraic dependence on 6 in the form 

ID + impV(L/6)21 z pV,8(L/G)l+Y, (3.3) 
where p and y are two constants. In contrast to the case of longitudinal motion, it is 
not obvious how, if at all, the exponent y is related to the fractal dimension of the 
surface. 

3.1. Numerical results 
We will now present results of numerical computations using the boundary integral 
method outlined in Appendix A and the conformal mapping method outlined in 
Appendix B. First, we shall confirm the validity of the expansion (3.1) for walls with 
sinusoidal shapes, and then we shall examine its applicability to a class of walls with 
triangular asperities leading to fractal shapes. 

3.1.1. Sinusoidal walls 
In figure 7(a) we plot the distribution of the magnitude of the reduced shear stress 

Sf. t / ( p V )  for wall amplitude a / L  = 0.10; t is the tangent vector. At high frequencies, 
the distribution of 6 f - t / ( p V )  reduces to that of the tangential velocity of the 
irrotational flow v represented by the dashed line. This behaviour confirms that, in a 
frame of reference moving with the wall, the Stokes layer is driven by the outer 
irrotational flow. The numerical results clearly suggest that the shear stress scales with 
1/6. In figure 7(b) we plot the corresponding distribution of the reduced phase shift 
arg cf- t) /n.  At high frequencies arg cf- t )  tends to the reference value of -2n required by 
the flat-plate solution, thereby demonstrating that the Stokes layer penetrates into the 

2 FLM 2 5 5  
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sinusoidal corrugations and wraps around the whole of the surface area of the wall. 
Additional numerical results, not shown in figures, showed that the magnitude of the 
normal component of the surface force scales with 1/d2 in agreement with 
considerations based on the added mass. The behaviour of the flow for larger wall 
amplitudes is similar to that illustrated in figure 7(a ,  b) but has a more complex 
structure. 

Turning to examine the drag force exerted on the wall, we decompose (3.1) into its 
real and imaginary parts, thus obtaining the asymptotic expressions 

In figure 7 ( c )  we plot the left-hand sides of (3.4) versus 6 / L  for several wall amplitudes 
a / L ,  and observe that the numerical results are in perfect agreement with the 
asymptotic predictions represented by the dashed lines. The values of m and d 
necessary for the computation of the asymptotic results were calculated from (3.2) with 
4 computed using the boundary integral method discussed in Appendix A. The values 
of m and d for a range of wall amplitudes are presented in figure 7(d ) .  We recall that 
d is composed of a skin friction that is independent of the wall amplitude and a form 
drag due to pressure forces, and use figure 7 ( d )  to find that as the wall amplitude is 
increased, the form drag due to normal stresses increases in a monotonic fashion and 
at an appreciable rate. 

3.1.2. Triangular asperities and fractal walls 
In figure 8 (a, b) we plot the distribution of the magnitude of shear stress for the first 

two von Koch shapes a = 0.50, m = 1,2. In both cases, at high frequencies we obtain 
the potential flow limit represented by the dashed line. The shear stress becomes either 
zero or infinite at the corners depending on the magnitude of the turning angle. With 
the exception of the corner behaviour, the general features of the flow are similar to 
those for sinusoidal walls discussed in 0 3.1.1. Extensive computations for rn = 3 at 
large and small frequencies could not be carried out with sufficient resolution owing to 
the large size of the resulting system of linear equations as well as excessive 
computational cost required for computing the Green’s function. 

Considering next the drag force on the wall, we examine the behaviour of the drag 
coefficients m and d with increasing wall refinement. Using the boundary integral 
method to obtain the velocity potential rj4 we were able to compute the value of m 
accurate to the third significant figure for m = 1,2, but not for higher levels. 
Computing the value of d using the boundary integral method involves differentiating 
discrete values of 4 to obtain the boundary velocity, but this yields appreciable 
numerical error even for the simplest case m = 1. 

As an alternative, we developed a conformal mapping method that is based on the 
iterative computation of a modified Swartz-Christoffel function discussed in Appendix 
B. Values of m and d computed using this method are tabulated in table 1 for three 
families of wall shapes to the accuracy shown. Results for high-order shapes and 
geometries with sharp asperities, at values of a close to 1, were prohibited by a failure 
of the numerical method to converge owing to crowding of the vertices in the image 
plane. 

The data in table 1 clearly indicate that, as the order of the wall is increased, m 
converges to a finite value thereby implying that the leading-order scaling in (3.1) 
remains valid. It is interesting to note in particular that for a = 0.50,0.80, the value of 
m actually decreases as the wall is refined to the next level. The drag coefficient d, on 
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u = 0.35 a = 0.50 a = 0.08 

m m d m d m d 
1 0.01373 1.06196 0.15720 1.9561 0.5055 7.941 
2 0.022 51 1.245 7 0.1527 2.005 0.475 7.135 
3 0.02363 1.3579 0.150 2.1 16 8.11 
3 0.023 78 1.457 2.44 
5 0.0238 1.557 

TABLE 1. The added mass coefficient m and drag coefficients d for walls 
with triangular asperities 

the other hand, appears to increase by a constant factor that is close to one as the wall 
is refined to the next level. This behaviour allows for the possibility that in the limit of 
a fractal geometry d becomes infinite and the second-order scaling in (3.1) ceases to 
be valid. 

To examine the applicability of the alternative dissipative scaling (3.3), in figure 8(c, 
d )  we plot the dimensionless magnitude and argument of the dimensionless modified 
drag force ID/CuV)+im(L/S)21(6/L) with respect to S/L on a log-log scale and a 
log-linear scale respectively. At small values of S/L, the magnitude of the modified 
drag force tends to the corresponding value of d represented by a horizontal line in 
figure 8(c) and shown in table 1. The central portions of the curves in figure 8(c) may 
be approximated with straight lines with slopes roughly equal to y = - 0.10. This value 
is clearly different from d = -0.262 which is the negative of the fractal dimension of 
the von Koch fractal expressing the gain in wall length with increasing m, discussed in 
$2. It is interesting to note that the slope y is approximately equal to 1 -x where x the 
ratio of two values of d at two successive values of m deduced from table 1.  This 
observation corroborates the accuracy of the effective boundary surface area theory, 
and suggests that x rather than d should be used in scaling the magnitude of the 
dissipative drag force. 

The argument of the modified drag force, shown in figure 8(d) ,  tends to -in at both 
small and large frequencies in agreement with (3.1). As in the case of longitudinal 
oscillations, the value of S/L where the argument is maximum is shifted to smaller 
values as m is increased. 

Insight into the effect of boundary shape on the viscous dissipation and drag force 
may be obtained by considering the contribution of each boundary segment to the 
dissipation integral shown in (3.2). In figure 9(a, b) we plot the value of the dissipation 
integral over each segment reduced by the length of the segment versus normalized 
arclength corresponding go the mid-point of each segment on a log-linear scale, for 
01 = 0.50 and m = 3,4.  The origin of the arclength was set at the leftmost point of the 
contours shown in the insets. We observe that the contribution to the total dissipation 
drops by several orders of magnitude within the nested cavities. Comparing figure 9(a) 
to figure 9 (b)  shows that the lowest contribution to the dissipation drops by almost one 
order of magnitude as m increases to the next level. This drastic decay would appear 
to suggest that as m tends to infinity d tends to a finite value, but table 1 suggests 
o thenvise. 

2-2 
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FIGURE 9. The contribution of the boundary segments to the dissipation integral (3.2) reduced with 
respect to the arclength of the segment, as a function of normalized arclength s of the mid-point of 
a segment, for a = 0.50 and (a) rn = 3, (b)  rn = 4. s = 0 corresponds to the leftmost point on the 
contours shown in the insets. One period is shown. 

4. Discussion 
Using a two-dimensional flow model we demonstrated the importance of wall 

roughness on the behaviour of the drag force. Our results for longitudinal motion 
provide an explicit example in which the magnitude of the drag force and rate of 
dissipation diverge according to the fractal dimension of the surface. In view of the 
strong restrictions on the boundary geometry and direction of flow, however, it is not 
likely that this behaviour is representative of more general motions. Our results for 
transverse oscillations suggest that the dissipative scaling of the drag force may be 
altered owing to the presence of an infinite sequence of self-similar irregularities, but 
not in a way that is related directly to the fractal dimension of the microstructure. This 
is in agreement with the conclusions of the asymptotic analysis of Koch (1987) for a 
difference class of boundary shapes. 
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Generalizing (2.1) and (3.1) to planar walls with three-dimensional irregularities, we 

(4.1) D = , U [ ( L / J ) ~ ~ .  I/e-T"'+L/Jd. I/efni+ ...I. 
Here m is a 3 x 2 dimensionless added mass tensor associated with the irregularities, 
d is a 3 x 2 dimensionless drag coefficient tensor, and V is the amplitude of the wall 
velocity in the (x,z)-plane. Energy arguments suggest that RWZ must be finite 
irrespectively of the wall microstructure. Our results in $52 and 3 indicate that the 
behaviour of d, and thus the validity of the second-order scaling in (4. l), depend upon 
the particular geometry of the microstructure and mode of motion. In $2 we found that 
in the case of two-dimensional fractal walls, the (x, z)-component of d diverges at an 
algebraic rate that is related to the fractal dimension of the surface. In $ 3 we found that 
the (x, x)-component of d may diverge but not in a way that is related directly to the 
fractal dimension of the surface. 

Some information on the behaviour of d for three-dimensional surfaces is provided 
by the experimental observations of Warner & Beamish (1987) on the attenuation of 
ultrasonic waves in porous ceramics filled with liquid helium at high frequencies. 
Warner & Beamish found that the functional form of attenuation versus frequency 
deviates from that observed for smooth porous surfaces, and interpreted their results 
to mean that the pore surface involves a variety of lengthscales comparable to 6, thus 
deducing a fractal dimension for the microstructure. In the context of (4. l), their results 
imply that the drag coefficient d diverges and the second-order dissipative scaling in 
(4.1) is not valid. This interpretation, however, is subject to criticism (Gist 1989; 
Warner & Beamish 1989). 

The presence of weak inertial forces will cause the onset of a steady streaming 
motion and development of associated steady shear and normal boundary stresses. 
Because of the symmetry of the geometries considered, the steady drag force exerted 
over one period of the wall will be equal to zero, and the dominant contribution to the 
force will still be given by the unsteady drag due to the linear motion. Strong inertial 
forces will complicate the physics of the flow in several important ways. First, the 
alternating ejection of vortex sheets of opposite sign from regions of large curvature 
and sharp corners will allow vortex motions and flow instabilities. Secondly, it is likely 
that the flow will not remain periodic in time. 

Concluding, we place the problem of oscillatory flow over irregular surfaces within 
the more general framework of transport processes across rough and fractal 
boundaries. Fractal geometries have been shown to describe a wide variety of natural 
surfaces (Avnir, Farin & Pfeiffer 1984, Katz & Thompson 1985), and their study is 
relevant to a number of transport processes occurring in natural and engineering 
applications. The functional relationship between drag and frequency may be regarded 
as a diagnostic that allows one to characterize the boundary microstructure and 
possibly resolve its fractal nature. Analogous functional forms relating macroscopic 
flow variables to frequency have been proposed as a tool for characterizing the 
structure of porous media (Charlaix, Kushnick & Stokes 1988; Warner & Beamish 
1987). In these applications, the functional form of the scaling law undergoes a 
transition from a viscous-dominated regime to an inertia-dominated regime, at that 
point where the nominal thickness of the Stokes layer becomes comparable to the size 
of the grains composing the porous medium. The present work suggests that measured 
macroscopic scaling laws do not necessarily yield accurate information on the 
geometry of the microstructure. 

write 1 .  
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Appendix A 
In this Appendix we outline a boundary integral method for computing the flow due 

to the longitudinal or transverse oscillations of the wall illustrated in figure 1. To 
simplify the notation, we reduce all variables using as characteristic length, velocity, 
and stress scales the period of the wall L,  the amplitude of the velocity V, and p V / L .  

A. 1. Longitudinal oscillations 
We express the z-component of the velocity in the form w = W(x, y )  eiwt and substitute 
into the Navier-Stokes equation to obtain the Helmholtz equation h2W = V2 Wwhere 
h2 = iwL2/v. We define h to be the primary square root of h2 with positive real part, 
setting A = (L/S)ehi. Using the boundary integral formulation for the Helmholtz 
equation, which is identical to Green’s third identity, and requiring the boundary 
condition W = 1 over the wall, we obtain a Fredholm integral equation of the first kind 
for the wall shear stress q = VW-n, 

r rpv 
J G(x, x,) q(x) dl(x) = -f + J VG(x, x,).n(x) dl(x), 

C C 

where C is the trace of the wall in the (x, y)-plane as indicated in figure 1, the point x, 
is located on C, PV denotes the principal value of the double-layer integral, and n is 
the normal vector pointing into the fluid. G is the periodic Green’s function of the 
Helmholtz equation, defined as a solution to the equation 

00 

V2G(x, x,) - h2G(x, x,) + d(x - x,) = 0, (A 2) 
n=-m 

where x, = (x, + nL, yo)  and d is the two-dimensional delta function. We find 

(A 3) 
1 -- 

G(x, x,) = - C [ker,(R,) + i kei,(R,)] 27c ,=-a 

where R, = Lr,/S, r ,  = Ix-x,~, and ker, kei are the real and imaginary Kelvin 
functions of zeroth order (Abramowitz & Stegun 1965). Since these functions decay at 
an exponential rate for large values of their arguments, the sum in (A3) may be 
conveniently truncated to a finite value of n that depends on the magnitude of S/L. 

A.2. Transverse oscillations 
We write u = U(x, y )  eiwt, P = p(x, y )  eiUt, and substitute these expressions into the 
Navier-Stokes equations to obtain 

h 2 U =  -Vp+VZU. (A 4) 
The problem is reduced to solving (A 4) along with the continuity equation V. U = 0, 
subject to the boundary condition U = (1, 0,O) along the wall. Using the boundary 
integral formulation (Pozrikidis 1992), we obtain the following Fredholm integral 
equation of the first kind for the boundary distribution of the surface forcef= o-n: 

f PPV 
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where G is the stress tensor, and the point x, is located on the wall contour C. 9 is the 
periodic Green’s function corresponding to (A 4), defined as a solution to the equation 

(A 6) 

#i and F are the corresponding Green’s functions for the pressure and stress tensor 
related by q j k  = - 8ik bj + a4Jaxk + a&/axi. Following a standard procedure for 
computing the Green’s functions of the equations of linearized fluid flow (Pozrikidis 
1992, Chap. 3), we find 

co 

VZ4j(x, x,) - h24j(x, x0) -- a h  (X - ~ 0 )  + ~ T C  Sij C d(x - x,) = 0; 
axi n=-m 

(A 7) 

(A 8) 

S2 
L 

m m 1 . 4  

xn xn B(RJ + i ovc(a,), 9(x,xJ = 1 C A(Rn)+ C ~ 

n=-m n=-m l-f:l 
#i@, xo) = -VC(-f,), 

where / is the identity matrix, 8,  = x-xn ,  i is the imaginary unit, and the functions 
A, B, C are defined as 

A(x)  = 2[kero(x) - keii(x)/x] + 2i[kei,(x) - keri(x)/x], 
B(x) = 2[ - ker,(x) + 2 keii(x)/x] - 2i[kei,(x) + 2 keri(x)/x], 

C(X) = log [cash ( ~ T C Y )  - cos (~Tcx ) ] .  

(A 9) 
(A 10) 
(A 11) 

The Kelvin’s functions and their derivatives may be approximated with polynomial 
and exponential expansions (Abramowitz & Stegun 1965, p. 384). Since successive 
terms in the sums of (A 7) decay at an exponential rate, the sum may be truncated at 
a finite value of n according to the value of S/L. 

At large frequencies, the flow is composed of an outer irrotational core and a Stokes 
boundary layer that lines the wall. To compute the outer flow we solve the following 
Fredholm integral equation of the first kind for the distribution of the velocity 
potential q5 along one period of the wall: 

f P V  f 

J ~ V%(x - x,) -n(x)  $(x) dl(x) = f + %(x - xo) n,(x) dl(x). 
C J, (A 12) 

93 is the periodic fundamental solution of the two-dimensional Laplace equation. This 
is equal to (l/n) C where the function C is given in (A 11). 

A.3. Numerical method 
The numerical procedure for solving the integral equations proceeds by discretizing the 
trace of the wall over one period C into a set of straight boundary segments, assuming 
that the unknown function is constant over each segment, and then applying the 
integral equations at the middle point of each segment to obtain a system of linear 
equations for the constant values of the unknown function. The singular single-layer 
integrals are computed by subtracting the logarithmic singularities of the kernels and 
then performing analytical integrations. The desingularized single-layer integrals and 
principal values of the double-layer integrals are computed using the six-point 
Gaussian quadrature. Since the collocation points are located at the middle of each 
segment, no special treatment of the principal values of the double-layer integrals is 
necessary, and ignoring the singularities yields accurate results. 

The numerical procedure works well even when the boundary contains sharp corners 
where the solution becomes infinite. In these cases, the accuracy of the computations 
is significantly improved by concentrating the boundary elements around the corners. 
An alternative procedure in which the singular behaviour of the solution is taken into 
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FIGURE 10. The distribution of shear stress near a boundary comer for longitudinal oscillations. 
A local similarity solution predicts a slope of -8 at all frequencies. 

(a> r K = 4  K = 8  K =  16 
1 .o 1.3462 1.3499 - 

1.50 1.3478 1.3515 - 

1.75 1.3483 1.3519 1.3527 
2.00 1.3487 1.3521 - 

(b )  r K = 4  K = 8  K =  16 K = 3 2  
1 .o 27.331 27.594 27.688 27.737 
1.50 27.604 27.834 27.872 27.880 
1.75 27.680 27.682 27.880 - 

TABLE 2. Magnitude of the drag force for longitudinal oscillations as a function of numerical 
parameters for (a) longitudinal oscillations and (b) transverse oscillations 

consideration in the numerical implementation did not offer significant improvements. 
In figure 10 we plot the distribution of shear stress versus arclength measured from a 
sharp corner of a von Koch line on a log-log scale, at different frequencies for 
longitudinal oscillation. The slopes of the lines at all frequencies are close to the value 
-; which is predicted by a local similarity solution. 

In table 2 we show the magnitude of the computed drag force on the m = 1 von Koch 
line for longitudinal and transverse motion as a function of the number of segments 
over each side K and the amplification 7 of the length of the segments from the corner 
to the centre of a side; 7 = 1 corresponds to an even distribution. We observe a rapid 
convergence which is in agreement with theoretical predictions for boundary element 
solutions with piecewise-constant discretizations near singular points (Chandler & 
Graham 1988). These results indicate that the numerical method is capable of 
accurately computing global variables with a moderate number of elements. 

In the majority of our computations we used values of 7 in the range 1.50 to 1.75. 
For longitudinal oscillations with m = 1,2,3 we used K = 32,16,8, and for lateral 
oscillations K = 16,8,6. In many cases, Richardson extrapolation with quadratic 
accuracy was used to improve the accuracy of the computed drag force. 
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Appendix B 
In this Appendix we outline a conformal mapping method suitable for computing 

streaming potential flow over a periodic polygonal wall as illustrated in figure 11, as 
well as the associated virtual mass and drag coefficients defined in (3.2). The domain 
of flow above the polygonal wall in the physical plane z = x+iy is mapped onto the 
upper-half plane 5 = c+ ir  using the modified Swartz-Christoffel mapping function 
dz/dg = G(Q where 

(B 1) G([)  = c fi (sin ------) Nc- a,) ai. 
i=l aN+l 

C is a complex constant, ai, i = 1, . . ., N +  1 are the images of the vertices z, within one 
period of the physical plane, and na, are the corresponding turning angles. These are 
positive for sharp corners and negative for blunt corners, as illustrated in figure 11. 

To render the mapping function unique, we stipulate the magnitude of C is equal to 
one, and set the first image point at the origin, a,  = 0. The remaining N unknowns 
include the argument of C and the location of the N vertices a,, i = 2, ..., N+1. 
Following Davis (1979) and Brady & Pozrikidis (1993), we compute the solution by the 
following iterative procedure. We set C = 1, guess values for the unknown a,, and 
calculate the location of successive vertices by computing 

%+l 

ZF+l = ZF+JGi G(Od6, (B 2) 

with z: = zl, the superscript C signifying ‘computed’. We then update the position of 
ai by setting 

IZi+1- Zil 

IA.i+l-zi I laNew i+l - arew[  = ]a,+l - ail ,c . 

The procedure is repeated until the values of a, do not change to the seventh decimal 
place. At the end of the iterations, the value of uN+l is equal to L. Since the complex 
function G(0 is evaluated as 

where the argument in the last term in (B 4) is either 0 or n, the last segment z$+~ -z$ 
is horizontal and the computed polygon is rotated by a certain angle with respect to 
the original polygon in the z-plane. To make the two polygons coincide, at the end of 
the iterations we perform a rotation by adjusting the argument of the complex constant 
C to a proper value. 

We find that the number of iterations is a strong function of the number of vertices 
and the shape of the wall, typically ranging between 3 for the simplest and 50 for the 
most difficult computations. Crowding of the vertices on the &axis decelerates the rate 
of convergence and allows oscillatory behaviour. Using dynamic continuation to 
obtain a good initial value reduces the number of iterations but does not eliminate 
numerical oscillations and slow convergence. 

The complex potential for uniform flow with velocity V along the x-axis is given by 
w = Vc. Using (3.2) we find that added mass coefficient m and drag coefficient d may 
be computed from the mapping function G by straightforward integration as 
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-L V -+- 

FIGURE 11. Conformal mapping of a periodic polygonal line to a straight line. 

The singular integrals in (B 2) and (B 5 )  were computed by subtracting and 
integrating analytically the kernels of the singularities, and then applying the 6, 12, or 
20 Gauss-Legendre quadrature to integrate the remaining regular component. 
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